MODAL REDUCTION STRATEGIES FOR INTERCONNECTED FLEXIBLE BODIES SIMULATION

F. O. Eke and G. K. Man Jet Propulsion Laboratory Pasadena, CA

INTRODUCTION

MULTI-BODY DYNAMICS PROGRAMS REQUIRE CHARACTERIZATION OF EACH BODY

- RIGID BODY: GEOMETRY AND MASS PROPERTIES
- FLEXIBLE BDOY
 - EXACT TYPE OF INPUT DEPENDS ON PROGRAM
 - ALL INVOLVE MODAL CHARACTERISTICS IN SOME FORM
 - ALWAYS NEED FOR MODAL TRUNCATION
 - SYSTEMATIZE TRUNCATION PROCEDURE

GALILEO SPACECRAFT

- ACTUATORS: SBA, SAS, THRUSTERS
- SENSORS: GYROS, CLOCK AND CONE ENCODERS, SUN SENSOR, STAR SCANNER
- CLOCK (SBA) CONTROL LOOP IS ACTIVE DURING ALL ATTITUDE CONTROL MANEUVERS
- SCAN
 PLATFORM
 (RIGID)

 SBA ACTUATOR

 GYROS

 GYROS
 - CLOCK CONTROLLER BANDWITCH≅ 0.5 Hz
 - GYRO ROLLOFF FREQUENCY ≅ 15 Hz
- NEED "ADEQUATE" MODEL OF PLANT FOR DESIGN AND SIMULATION

TRUNCATION CRITERIA

- CONTROL SYSTEM SPECIFICATIONS CAN SET TRUNCATION CRITERIA AT SYSTEM LEVEL ONLY
 - SYSTEM MODE WITH FREQUENCY ABOVE 15Hz CAN BE DROPPED
 - ELIMINATE MODES THAT DO NOT INTERACT "STRONGLY" WITH THE CONTROL SYSTEM

SYSTEM LEVEL TRUNCATION

j LOCATION, $X_{i}(s) = DijF_{j}(s) = \sum_{k=1}^{m} \left\{ \phi_{ik} \phi_{jk} A I \left[s \left(s^{2} + \omega_{k}^{2} \right) \right] \right\}$ (4)

SYSTEM LEVEL TRUNCATION (CONT'D)

CONTRIBUTION OF kth MODE TO RESPONSE:

$$X_i^k(s) = \phi_{ik} \phi_{jk} A/[s(s^2 + \omega_k^2)]$$
 (5)

OR

$$X x_i^k (t) = (\phi_{ij} \phi_{jk} A / \omega_k^2) [1 - \cos(\omega_k t)]$$
 (6)

SINUSOIDAL RESPONSE WITH PEAK-TO-PEAK AMPLITUDE TO

$$x_i^k = 2 \phi_{ik} \phi_{jk} A/\omega_k^2$$
 (7)

A MEASURE OF IMPORTANCE OF MODE K

APPLICATION TO GALILEO

APPLICATION TO GALILEO (CONT'D)

- AVAILABLE DATA
 - EIGENVALUES, EIGENVECTORS FOR UP TO 60 MODES
- PLOT MODAL INFLUENCE COEFFICIENTS
- DISCARD MODES WITH "LOW" COEFFICIENTS
- USE BODE PLOT TO CHECK RESULTS

MODAL INFLUENCE COEFFICIENTS

MODAL INFLUENCE COEFFICIENTS

BODE PLOT OF PLANT ALPHA = 0 BETA = 30

BODE PLOT OF PLANT CLOCK = 0 CONE = 30

BODE PLOT OF PLANT ALPHA = 0 BETA = 30

TRUNCATION AT COMPONENT LEVEL

- AVAILABLE
 - COMPONENT "FREE-FREE" MODES
 - SYSTEM MODES TO BE RETAINED
- PROBLEM
 - DETERMINATION OF "IMPORTANT" COMPONENT FREE-FREE MODES FROM KNOWLEDGE OF SYSTEM MODES
- SOLUTION
 - RETAIN THOSE COMPONENT MODES THAT "CONTRIBUTE SUBSTANTIALLY" TO IMPORTANT SYSTEM MODES

COMPONENT LEVEL TRUNCATION (CONT'D)

$$\begin{array}{c}
M_{A}\ddot{x}_{A} + K_{A}x_{A} = F_{A} \\
x_{A} = \phi_{A} \quad q_{A} \\
I\ddot{q}_{A} + \omega^{2}q_{A} = \phi_{A}^{T} F_{A}
\end{array}$$

$$\begin{array}{c}
BODY A \\
D.O.F. = n_{A}
\end{array}$$

$$\begin{array}{c}
M_{B} \ddot{x}_{B} + K_{B}x_{B} = F_{B} \\
x_{B} = \phi_{B}q_{B}
\end{array}$$

$$\begin{array}{c}
BODY B \\
D.O.F. = n_{B}
\end{array}$$

$$\begin{array}{l}
M\ddot{x} + Kx = F \\
x = \phi q \\
I\ddot{q} + \omega^{2}q = \phi^{T}F
\end{array}$$

$$\begin{array}{l}
COMBINED \\
SYSTEM \\
D.O.F. = n \leq (n_{A} + n_{B})
\end{array}$$
(10)

COMPONENT LEVEL TRUNCATION (CONT'D)

- SYSTEM AUGMENTED ϕ MATRIX = $\overline{\phi}$
 - SYSTEM MATRIX WITH SOME ROWS REPEATED

COMPONENT LEVEL TRUNCATION (CONT'D)

- \bullet Delete columns of $\,\overline{\phi}$ that correspond to system modes that were dropped
- ullet REDUCED ϕ MATRICES: $\hat{\phi}_{\mathrm{A}}$ AND $\hat{\phi}_{\mathrm{B}}$
- \bullet USE $~\hat{\phi}_{\rm A}$ and $~\hat{\phi}_{\rm B}$ as transformation matrices for Bodies a and B respectively

•
$$\hat{\phi}_{A}^{T} M_{A} \hat{\phi}_{A}^{\dot{\alpha}} \hat{q}_{A}^{\dot{\alpha}} + \hat{\phi}_{A}^{T} K_{A} \hat{\phi} \hat{q}_{A}^{\dot{\alpha}} = \hat{\phi}_{A}^{T} F_{A}$$
 (12)

OR •
$$\hat{M}_A \ddot{\hat{q}}_A + \hat{K}_A \hat{q}_A = \hat{\phi}_A^T F_A$$
 (13)

$$\bullet \quad \hat{M}_{B} \stackrel{?}{q}_{B} + \hat{K}_{B} \stackrel{?}{q}_{B} = \hat{\phi}_{B}^{T} F_{B}$$
 (14)

COMPONENT LEVEL TRUNCATION (CONT'D)

- \hat{M}_A , \hat{K}_A , \hat{M}_B , \hat{K}_B NOT NECES SARILY DIAGONAL
- DIAGONALIZE VIA ANOTHER MODAL ANALYSIS

$$\bullet \ \hat{\overline{q}}_{A} = \psi_{A} \overline{q}_{A} \tag{15}$$

$$\bullet \ \hat{q}_B = \psi_B \ \hat{q}_B \tag{16}$$

$$- \overline{q}_{A} + \overline{\omega}_{A}^{2} \overline{q}_{A} = \psi_{A}^{T} \hat{\phi}_{A}^{T} F$$
 (17)

$$I\ddot{q}_B + \overline{\omega}_B^2 \ \overline{q}_B = \psi_B^{\dagger} \ \hat{\phi}_B^{\dagger} F$$
 (18)

COMPONENT LEVEL TRUNCATION (CONT'D)

- $\overline{\omega}_{\rm A}$, $\overline{\omega}_{\rm B}$ are diagonal; they are also sub-matrices of $\omega_{\rm A}$, $\omega_{\rm B}$ respectively, and contain frequencies of component modes to be retained
- SIMILARLY $\Phi_A = \hat{\phi}_A \Psi_A$ AND $\Phi_B = \hat{\phi}_B \Psi_B$ ARE SUBMATRICES OF ϕ_A AND ϕ_B , AND CONTAIN THE EIGENVECTORS OF COMPONENT MODES TO BE RETAINED

SUMMARY AND CONCLUSION

- DETERMINE SYSTEM MODES TO BE RETAINED USING
 - AVAILABLE CRITERIA
 - MODAL INFLUENCE COEFFICIENTS
 - BODE
- DESCEND TO COMPONENT LEVEL VIA A TWO-PHASE DIAGONALIZATION PROCESS STARTING WITH SUBMATRICES OF TRUNCATED AUGMENTED SYSTEM MODAL MATRIX

FUTURE WORK

- STREAMLINE SIMULATION CODES ESPECIALLY DYNAMICS FORMULATION METHOD
- DEVELOP VERY EFFICIENT AND EASILY IMPLEMENTABLE MODEL REDUCTION STRATEGY